packages <- c("tidyverse", "lubridate", "writexl", "knitr",
"MMWRweek", "DT")
if (length(setdiff(packages, rownames(installed.packages()))) > 0) {
install.packages(setdiff(packages, rownames(installed.packages())), repos = "http://cran.us.r-project.org")
}
options(knitr.kable.NA = '')
library(tidyverse)
library(lubridate)
library(writexl)
library(knitr)
library(MMWRweek)
library(DT)
nat <- read_csv("alz.cause.summary.state.df_2020-08-20.csv") %>%
filter(state=="US") %>%
#mutate(week_end=mdy(week_end))
mutate(week_end=ymd(week_end))
weeks_in <- 1:30
weeks_march <- 10:30
natlsum_ad <- nat %>%
filter(mmwr_year==2020) %>%
filter(mmwr_week %in% weeks_in)
#national_weekly <- natlsum_ad %>%
# select(week, week_end_date, year,
# all_cause_deaths, expected_all_cause=baseline_all_cause,
# expected_all_cause_upper=baseline_all_cause_upper,
# expected_all_cause_lower=baseline_all_cause_lower,
# excess_all_cause_deaths, covid19.nchs)
natlsum_ad %>%
ggplot(aes(week_end,obs)) +
geom_ribbon(aes(ymin=lpi, ymax=upi), fill="gray70", alpha=.5) +
geom_ribbon(aes(ymin=pred, ymax=obs), fill="sienna1", alpha=.5) +
geom_line(data=natlsum_ad, aes(x=week_end, y=obs),color="sienna1", alpha=.4) +
geom_line(color="black", size=1) +
theme_minimal() +
labs(title="U.S. Alzheimer and dementia deaths", y="Weekly deaths", x="")

states <- read_csv("alz.cause.summary.state.df_2020-08-07.csv") %>%
filter(state!="US" ) %>%
mutate(week_end=mdy(week_end))
states_29 <- states %>%
filter(mmwr_year==2020) %>%
filter(mmwr_week==29) %>%
mutate(flag = case_when(
obs < lpi ~ "Lower than baseline range",
obs > upi ~ "Higher than baseline range",
TRUE ~ "Within range"
)) %>%
select(state, flag29=flag)
states_30 <- states %>%
filter(mmwr_year==2020) %>%
filter(mmwr_week==30) %>%
mutate(flag = case_when(
obs < lpi ~ "Lower than baseline range",
obs > upi ~ "Higher than baseline range",
TRUE ~ "Within range"
)) %>%
select(state, flag30=flag)
march <- states %>%
filter(mmwr_year==2020) %>%
filter(mmwr_week %in% weeks_march) %>%
group_by(state) %>%
summarize(deaths=sum(obs, na.rm=T),
expected=sum(pred, na.rm=T),
excess_deaths=sum(unexplained.cases, na.rm=T)) %>%
mutate(x_excess=round((deaths-expected)/expected*100,2)) %>%
ungroup() %>%
left_join(states_29) %>%
left_join(states_30)
higher <- march %>%
filter(flag29=="Higher than baseline range") %>%
pull(state)
within <- march %>%
filter(flag29=="Within range") %>%
pull(state)
lower <- march %>%
filter(flag29=="Lower than baseline range") %>%
pull(state)
States
states %>%
filter(mmwr_year==2020) %>%
filter(mmwr_week %in% weeks_in) %>%
ggplot(aes(week_end, obs)) +
geom_ribbon(aes(ymin=lpi, ymax=upi), fill="gray70", alpha=.5) +
geom_ribbon(aes(ymin=pred, ymax=obs), fill="sienna1", alpha=.5) +
geom_line(aes(x=week_end, y=obs),color="sienna1", alpha=.4) +
geom_line(color="black", size=.5) +
facet_wrap(~state, scales="free", ncol=5) +
theme_minimal()#,

#subtitle="Exceeds the expected range and with the least delays in reporting")
march %>% datatable()